Quantcast
Channel: Active questions tagged string-manipulation - Mathematica Stack Exchange
Viewing all articles
Browse latest Browse all 187

How to convert the element into Grid

$
0
0

I got the html source code for this element for this page in Wikipedia:

<table class="wikitable"> <tbody><tr> <th><a href="/wiki/Hermann-Mauguin_notation" class="mw-redirect" title="Hermann-Mauguin notation">Hermann-Mauguin</a> </th> <th><a href="/wiki/Schoenflies_notation" title="Schoenflies notation">Schoenflies</a> </th> <th><a href="/wiki/Order_(group_theory)" title="Order (group theory)">Order</a> </th> <th colspan="2"><a href="/wiki/List_of_small_groups" title="List of small groups">Abstract group</a> </th></tr> <tr align="center"> <td>1</td> <td><i>C<sub>1</sub></i></td> <td>1</td> <td><a href="/wiki/Trivial_group" title="Trivial group">C<sub>1</sub></a></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{1}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{1}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d25e00207b473def7c961593ce3cd98dd80a49c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{1}^{1}}"></span> </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">1</span></td> <td><i>C<sub>i</sub> = S<sub>2</sub></i></td> <td>2</td> <td rowspan="3"><a href="/wiki/Cyclic_group" title="Cyclic group">C<sub>2</sub></a></td> <td rowspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{2}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{2}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1174a2e4bde969cc5660ac37e7cf2d449f34c799" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{2}^{1}}"></span> </td></tr> <tr align="center"> <td>2</td> <td><i>C<sub>2</sub></i></td> <td>2 </td></tr> <tr align="center"> <td>m</td> <td><i>C<sub>s</sub> = C<sub>1h</sub></i></td> <td>2 </td></tr> <tr align="center"> <td>3</td> <td><i>C<sub>3</sub></i></td> <td>3</td> <td><a href="/wiki/Cyclic_group" title="Cyclic group">C<sub>3</sub></a></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{3}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{3}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db7dc3dc80ca387d2b2f77d680491e28635fda9e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{3}^{1}}"></span> </td></tr> <tr align="center"> <td>4</td> <td><i>C<sub>4</sub></i></td> <td>4</td> <td rowspan="2"><a href="/wiki/Cyclic_group" title="Cyclic group">C<sub>4</sub></a></td> <td rowspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{4}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{4}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84e4372d852751c4b2b539bac2478e5989bb895f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{4}^{1}}"></span> </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span></td> <td><i>S<sub>4</sub></i></td> <td>4 </td></tr> <tr align="center"> <td>2/m</td> <td>&nbsp;<i>C<sub>2h</sub></i></td> <td>4</td> <td rowspan="3"><a href="/wiki/Klein_four-group" title="Klein four-group">D<sub>2</sub></a> = C<sub>2</sub> * C<sub>2</sub></td> <td rowspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{4}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{4}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b5a38e50035b536bdab5baaf96bf595aa0ca44" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{4}^{2}}"></span> </td></tr> <tr align="center"> <td>&nbsp;222</td> <td><i>D<sub>2</sub> = V</i></td> <td>4 </td></tr> <tr align="center"> <td>mm2</td> <td><i>C<sub>2v</sub></i></td> <td>&nbsp;4 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">3</span></td> <td><i>C<sub>3i</sub> = S<sub>6</sub></i></td> <td>6</td> <td rowspan="3"><a href="/wiki/Cyclic_group" title="Cyclic group">C<sub>6</sub></a></td> <td rowspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{6}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{6}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e1c517ac3c9f730675e711487dca38f6fd5df30" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{6}^{1}}"></span> </td></tr> <tr align="center"> <td>6</td> <td><i>C<sub>6</sub></i></td> <td>6 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">6</span></td> <td><i>C<sub>3h</sub></i></td> <td>6 </td></tr> <tr align="center"> <td>32</td> <td><i>D<sub>3</sub></i></td> <td>6</td> <td rowspan="2"><a href="/wiki/Dihedral_group_of_order_6" title="Dihedral group of order 6">D<sub>3</sub></a></td> <td rowspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{6}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{6}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97b6123d14a431a3408d288a8ab33091bbb88be6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{6}^{2}}"></span> </td></tr> <tr align="center"> <td>3m</td> <td><i>C<sub>3v</sub></i></td> <td>6 </td></tr> <tr align="center"> <td>mmm</td> <td><i>D<sub>2h</sub></i> = <i>V<sub>h</sub></i></td> <td>8</td> <td>D<sub>2</sub> * C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{8}^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             3</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{8}^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/308c156140d85eda4c42eab954996bb4a09670aa" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{8}^{3}}"></span> </td></tr> <tr align="center"> <td>&nbsp;4/m</td> <td><i>C<sub>4h</sub></i></td> <td>8</td> <td>C<sub>4</sub> * C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{8}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{8}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ada708821539b862c5b8ba0ca3cff6fa41dfee6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{8}^{2}}"></span> </td></tr> <tr align="center"> <td>422</td> <td><i>D<sub>4</sub></i></td> <td>8</td> <td rowspan="3"><a href="/wiki/Dihedral_group_of_order_8" class="mw-redirect" title="Dihedral group of order 8">D<sub>4</sub></a></td> <td rowspan="3"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{8}^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             4</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{8}^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0fc94ae5b040781d41290e6d336c6c184456947" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.881ex; height:3.176ex;" alt="{\displaystyle G_{8}^{4}}"></span> </td></tr> <tr align="center"> <td>4mm</td> <td><i>C<sub>4v</sub></i></td> <td>8 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span>2m</td> <td><i>D<sub>2d</sub></i> = <i>V<sub>d</sub></i></td> <td>8 </td></tr> <tr align="center"> <td>6/m</td> <td><i>C<sub>6h</sub></i></td> <td>12</td> <td>C<sub>6</sub> * C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{12}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{12}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8079425dfa62db8c1807dd37d2e9f0ca33b50832" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{12}^{2}}"></span> </td></tr> <tr align="center"> <td>23</td> <td><i>T</i></td> <td>12</td> <td><a href="/wiki/Alternating_group" title="Alternating group">A<sub>4</sub></a></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{12}^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             5</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{12}^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f72de8565765aa433e8b9545a2568320c557c1a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{12}^{5}}"></span> </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">3</span>m</td> <td><i>D<sub>3d</sub></i></td> <td>12</td> <td rowspan="4"><a href="/wiki/Dihedral_group" title="Dihedral group">D<sub>6</sub></a></td> <td rowspan="4"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{12}^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             3</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{12}^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ca0f72df0a61c70ca8cd7397c627104a690b51" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{12}^{3}}"></span> </td></tr> <tr align="center"> <td>622</td> <td><i>D<sub>6</sub></i></td> <td>12 </td></tr> <tr align="center"> <td>6mm</td> <td><i>C<sub>6v</sub></i></td> <td>12 </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">6</span>m2</td> <td><i>D<sub>3h</sub></i></td> <td>12 </td></tr> <tr align="center"> <td>4/mmm</td> <td><i>D<sub>4h</sub></i></td> <td>16</td> <td>D<sub>4</sub> * C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{16}^{9}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             16</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             9</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{16}^{9}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e488c8251fb28ce7cc1cbb2aad22e312dcb7b4af" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{16}^{9}}"></span> </td></tr> <tr align="center"> <td>6/mmm</td> <td><i>D<sub>6h</sub></i></td> <td>24</td> <td>D<sub>6</sub> * C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{24}^{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             24</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             5</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{24}^{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3f2d88a193181d4507b9e444282e377c8423046" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{24}^{5}}"></span> </td></tr> <tr align="center"> <td>m<span style="text-decoration:overline;">3</span></td> <td><i>T<sub>h</sub></i></td> <td>24</td> <td>A<sub>4</sub> * C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{24}^{10}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             24</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             10</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{24}^{10}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87c5da95e094a54481b431de7a060a671010453" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{24}^{10}}"></span> </td></tr> <tr align="center"> <td>432</td> <td><i>O</i> &nbsp;</td> <td>24</td> <td rowspan="2"><a href="/wiki/Symmetric_group" title="Symmetric group">S<sub>4</sub></a></td> <td rowspan="2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{24}^{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             24</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             7</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{24}^{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deda8b880ce0e1f24bcdfa9186169e117859585d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{24}^{7}}"></span> </td></tr> <tr align="center"> <td><span style="text-decoration:overline;">4</span>3m</td> <td><i>T<sub>d</sub></i></td> <td>24 </td></tr> <tr align="center"> <td>m<span style="text-decoration:overline;">3</span>m</td> <td><i>O<sub>h</sub></i></td> <td>48</td> <td>S<sub>4</sub> * C<sub>2</sub></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{48}^{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>            G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>             48</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>             7</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">         {\displaystyle G_{48}^{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2001552d2fb44e9c1dc1e71e46328ebf37028c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.703ex; height:3.176ex;" alt="{\displaystyle G_{48}^{7}}"></span> </td></tr></tbody></table>

If I use Grid[ImportString[st, {"HTML", "FullData"}][[1, 1, 1]], Frame -> All], I will lose a lot of information in the source code, such as <sub> subscript information, cell cross-line information. Is there a better way to recover this table from this html string?

  1. The <image> element I can think of as an empty string
  2. latex formulas do not need to be rendered, just displayed as is

Viewing all articles
Browse latest Browse all 187

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>